6. Targa ADS, Benitez ID, Dakterzada F, Fontenele-Araujo J, Minguez O, Zetterberg H, et al. The circadian rest-activity pattern predicts cognitive decline among mild-moderate Alzheimer's disease patients. Alzheimer's Research & Therapy. 2021;13:161.
https://doi.org/10.1186/s13195-021-00903-7
9. Nater UM, Rohleder N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology. 2009;34(4):486-496.
https://doi.org/10.1016/j.psyneuen.2009.01.014
10. Yamane N, Ikeda A, Tomooka K, Saito I, Maruyama K, Eguchi E, et al. Salivary alpha-amylase activity and mild cognitive impairment among Japanese older adults: The Toon Health Study. The Journal of Prevention of Alzheimer's Disease. 2022;9:752-757.
https://doi.org/10.14283/jpad.2022.51
12. Suh M. The association of salivary alpha-amylase, heart rate variability, and psychological stress on objectively measured sleep behaviors among college students. Frontiers of Nursing. 2022;9(1):63-70.
https://doi.org/10.2478/fon-2022-0008
14. Roveda E, Bruno E, Galasso L, Mulè A, Castelli L, Villarini A, et al. Rest-activity circadian rhythm in breast cancer survivors at 5 years after the primary diagnosis. Chronobiology International. 2019;36(8):1156-1165.
https://doi.org/10.1080/07420528.2019.1621330
17. LaVoy EC, Palmer CA, So C, Alfano CA. Bidirectional relationships between sleep and biomarkers of stress and immunity in youth. International Journal of Psychophysiology. 2020;158:331-339.
https://doi.org/10.1016/j.ijpsycho.2020.10.010
20. Han JW, Kim TH, Jhoo JH, Park JH, Kim JL, Ryu SH, et al. A normative study of the Mini-Mental State Examination for Dementia Screening (MMSE-DS) and its short form(SMMSE-DS) in the Korean elderly. Journal of Korean Geriatric Psychiatry. 2010;14(1):27-37.
21. Jessen F, Wolfsgruber S, Wiese B, Bickel H, Mösch E, Kaduszkiewicz H, et al. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimer’s & Dementia. 2014;10(1):76-83.
https://doi.org/10.1016/j.jalz.2012.09.017
22. Suh M. Influences of autonomic function, salivary cortisol and physical activity on cognitive functions in institutionalized older adults with mild cognitive impairment: based on neurovisceral integration model. Journal of Korean Academy of Nursing. 2021;51(3):294-304.
https://doi.org/10.4040/jkan.20282
23. Neikrug AB, Chen IY, Palmer JR, McCurry SM, Von Korff M, Perlis M, et al. Characterizing behavioral activity rhythms in older adults using actigraphy. Sensors. 2020;20(2):549.
https://doi.org/10.3390/s20020549
24. Cespedes Feliciano EM, Quante M, Weng J, Mitchell JA, James P, Marinac CR, et al. Actigraphy-derived daily rest-activity patterns and body mass index in community-dwelling adults. Sleep. 2017;40(12):zsx168.
https://doi.org/10.1093/sleep/zsx168
25. Van Someren EJ, Swaab DF, Colenda CC, Cohen W, McCall WV, Rosenquist PB. Bright light therapy: improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiology International. 1999;16(4):505-518.
https://doi.org/10.3109/07420529908998724
27. Sun X, Yu W, Wang M, Hu J, Li Y. Association between rest-activity rhythm and cognitive function in the elderly: The U.S. National Health and Nutrition Examination Survey, 2011-2014. Frontiers in Endocrinology. 2023;14:1135085.
https://doi.org/10.3389/fendo.2023.1135085
29. Jaiswal SJ, Bagsic SRS, Takata E, Kamdar BB, Ancoli-Israel S, Owens RL. Actigraphy-based sleep and activity measurements in intensive care unit patients randomized to ramelteon or placebo for delirium prevention. Scientific Reports. 2023;13(1):1450.
https://doi.org/10.1038/s41598-023-28095-0
30. Zerón-Rugerio MF, Díez-Noguera A, Izquierdo-Pulido M, Cambras T. Higher eating frequency is associated with lower adiposity and robust circadian rhythms: a cross-sectional study. The American Journal of Clinical Nutrition. 2021;113(1):17-27.
https://doi.org/10.1093/ajcn/nqaa282
37. Klaus K, Doerr JM, Strahler J, Skoluda N, Linnemann A, Nater UM. Poor night's sleep predicts following day's salivary alpha-amylase under high but not low stress. Psychoneuroendocrinology. 2019;101:80-86.
https://doi.org/10.1016/j.psyneuen.2018.10.030
38. Pundir M, Papagerakis S, De Rosa MC, Chronis N, Kurabayashi K, Abdulmawjood S, et al. Emerging biotechnologies for evaluating disruption of stress, sleep, and circadian rhythm mechanism using aptamer-based detection of salivary biomarkers. Biotechnology Advances. 2022;59:107961.
https://doi.org/10.1016/j.biotechadv.2022.107961
39. Shibasaki K, Ogawa S, Yamada S, Iijima K, Eto M, Kozaki K, et al. Association of decreased sympathetic nervous activity withmortality of older adults in long-term care. Geriatrics & Gerontology International. 2014;14:159-166.
https://doi.org/10.1111/ggi.12074
40. Fuji S, Tanioka T, Yasuhara Y, Sato M, Saito K, Purnell MJ, et al. Characteristic autonomic nervous activity of institutionalized elders with dementia. Open Journal of Psychiatry. 2016;6(1):34-49.
http://doi.org/10.4236/ojpsych.2016.61004
43. Lee PMY, Liao G, Tsang CYJ, Leung CC, Kwan MP, Tse LA. Sex differences in the associations of sleep-wake characteristics and rest-activity circadian rhythm with specific obesity types among Hong Kong community-dwelling older adults. Archives of Gerontology and Geriatrics. 2023;113:105042.
https://doi.org/10.1016/j.archger.2023.105042
44. Kume Y, Kodama A, Maekawa H. Preliminary report; comparison of the circadian rest-activity rhythm of elderly Japanese community-dwellers according to sarcopenia status. Chronobiology International. 2020;37(7):1099-1105.
https://doi.org/10.1080/07420528.2020.1740725