3. Lee J.E., Choi J.K., Lim H.S., Kim J.H., Cho J.H., Kim G.S., et al. The prevalence and incidence of parkinson’s disease in South Korea: a 10-year nationwide population: Based Study. Journal of the Korean Neurological Association. 2017;35(4):191-198.
https://doi.org/10.17340/jkna.2017.4.1
5. Poewe W., Seppi K., Tanner C.M., Halliday G.M., Brundin P., Volkmann J., et al. Parkinson disease. Nature Reviews Disease Primers. 2017;3:17013.
https://doi.org/10.1038/nrdp.2017.13
6. Mallach A., Weinert M., Arthur J., Gveric D., Tierney T.S., Alavian K.N.. Post mortem examination of Parkinson’s disease brains suggests decline in mitochondrial biomass, reversed by deep brain stimulation of subthalamic nucleus. FASEB Journal. 2019;33(6):6957-6961.
https://doi.org/10.1096/fj.201802628r
7. Tanner C.M., Langston J.W.. Do environmental toxins cause Parkinson’s disease? A critical review. Neurology. 1990;40(10):Suppl. 3. S17-S30.
11. Djuric G., Markovic V., Pekmezovic T., Tomic A., Kresojevic N., Kostic V., et al. Risk factors for levodopa-induced dyskinesia in parkinson’s disease patients. Vojnosanitetski Pregled. 2017;74(10):921-926.
https://doi.org/10.2298/VSP150723264D
13. Athauda D., Foltynie T.. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: mechanisms of action. Drug Discovery Today. 2016;21(5):802-818.
https://doi.org/10.1016/j.drudis.2016.01.013
19. Langston J.W., Ballard P., Tetrud J.W., Irwin I.. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219(4587):979-980.
https://doi.org/1126/science.6823561
20. Marini A.M., Lipsky R.H., Schwartz J.P., Kopin I.J.. Accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in cultured cerebellar astrocytes. Journal of Neurochemistry. 1992;58(4):1250-1258.
https://doi.org/10.1111/j.1471-4159.1992.tb11336.x
21. Watanabe Y., Himeda T., Araki T.. Mechanisms of MPTP toxicity and their implications for therapy of Parkinson’s disease. Medical Science Monitor. 2005;11(1):RA17-RA23.
22. Andersen J.K., Chinta S.. In: Sierra F., Kohanski R., Parkinson’s disease and aging. editors. Advances in geroscience. 2016 1st ed.Basel: Springer; p. 229-255.
https://doi.org/10.1007/978-3-319-23246-1
25. Rani L., Sharma N., Singh S., Grewal A.S.. Therapeutic potential of vitamin c: an overview of various biological activities. International Journal of Pharmaceutical Quality Assurance. 2019;10(04):605-612.
https://doi.org/10.25258/ijpqa.10.4.8
27. Choi S., Han J., Kim J.H., Kim A.R., Kim S.H., Lee W., et al. Advances in dermatology using DNA aptamer “Aptamin C” innovation: Oxidative stress prevention and effect maximization of vitamin C through antioxidation. Journal of Cosmetic Dermatology. 2020;19(4):970-976.
https://doi.org/10.1111/jocd.13081
28. Song M.K., Lee J.H., Kim J., Kim J.H., Hwang S., Kim Y.S., et al. Neuroprotective effect of NXP031 in the MPTP-induced Parkinson’s disease model. Neuroscience Letters. 2021;740:135425.
https://doi.org/10.1016/j.neulet.2020.135425
29. Muñoz-Manchado A.B., Villadiego J., Romo-Madero S., Suárez-Luna N., Bermejo-Navas A., Rodríguez-Gómez J.A., et al. Chronic and progressive Parkinson’s disease MPTP model in adult and aged mice. Journal of Neurochemistry. 2016;136(2):373-387.
https://doi.org/10.1111/jnc.13409
30. Bhaduri B., Abhilash P.L., Alladi P.A.. Baseline striatal and nigral interneuronal protein levels in two distinct mice strains differ in accordance with their MPTP susceptibility. Journal of Chemical Neuroanatomy. 2018;91:46-54.
https://doi.org/10.1016/j.jchemneu.2018.04.005
31. Liebetanz D., Baier P.C., Paulus W., Meuer K., Bähr M., Weishaupt J.H.. A highly sensitive automated complex running wheel test to detect latent motor deficits in the mouse MPTP model of Parkinson’s disease. Experimental Neurology. 2007;205(1):207-213.
https://doi.org/10.1016/j.expneurol.2007.01.030
32. Smeyne M., Goloubeva O., Smeyne R.J.. Strain-dependent susceptibility to MPTP and MPP(+)-induced parkinsonism is determined by glia. Glia. 2001;34(2):73-80.
33. Compton D.R., Hudzik T.J.. In: Markgraf Carrie G., Hudzik Thomas J., Compton David R., Neurochemistry of abuse liability assessment and primary behavioral correlates. editors. Nonclinical assessment of abuse potential for new pharmaceuticals. 2015 1st ed. Cambridge, MA: Academic Press; p. 9-48.
https://doi.org/10.1016/B978-0-12-420172-9.00002-3
35. Bornstein S.R., Yoshida-Hiroi M., Sotiriou S., Levine M., Hartwig H.G., Nussbaum R.L., et al. Impaired adrenal catecholamine system function in mice with deficiency of the ascorbic acid transporter (SVCT2). FASEB Journal. 2003;17(13):1928-1930.
https://doi.org/10.1096/fj.02-1167fje
36. Seitz G., Gebhardt S., Beck J.F., Böhm W., Lode H.N., Niethammer D., et al. Ascorbic acid stimulates DOPA synthesis and tyrosine hydroxylase gene expression in the human neuroblastoma cell line SK-N-SH. Neuroscience Letters. 1998;244(1):33-36.
https://doi.org/10.1016/s0304-3940(98)00129-3
37. Yan J., Studer L., McKay R.D.. Ascorbic acid increases the yield of dopaminergic neurons derived from basic fibroblast growth factor expanded mesencephalic precursors. Journal of Neurochemistry. 2001;76(1):307-311.
https://doi.org/10.1046/j.1471-4159.2001.00073.x
38. Hantikainen E., Trolle Lagerros Y., Ye W., Serafini M., Adami H.O., Bellocco R., et al. Dietary antioxidants and the risk of parkinson disease: The Swedish National March Cohort. Neurology. 2021;96(6):e895-e903.
https://doi.org/10.1212/WNL.0000000000011373
39. Choi S., Hwang Y., Kim T., Kim J.H.. Effects of oxidative stress prevention using DNA aptamer (Aptamin C) in keratinocyte. Highlights on Medicine and Medical Science. 2021;17:9-16.
https://doi.org/10.9734/bpi/hmms/v17/2795F
41. Desole M.S., Miele M., Esposito G., Fresu L.G., Migheli R., Zangani D., et al. Neuronal antioxidant system and MPTP-induced oxidative stress in the striatum and brain stem of the rat. Pharmacology, Biochemistry, and Behavior. 1995;51(4):581-592.
https://doi.org/10.1016/0091-3057(94)00401-4
43. Acuña A.I., Esparza M., Kramm C., Beltrán F.A., Parra A.V., Cepeda C., et al. A failure in energy metabolism and antioxidant uptake precede symptoms of Huntington’s disease in mice. Nature Communications. 2013;4:2917.
https://doi.org/10.1038/ncomms3917
47. Das S., Basu A.. Inflammation: a new candidate in modulating adult neurogenesis. Journal of Neuroscience Research. 2008;86(6):1199-1208.
http://doi:10.1002/jnr.21585